Medical Policy: 06.01.15 

Original Effective Date: July 2016 

Reviewed: July 2018 

Revised: July 2018 

 

Benefit Application:

Benefit determinations are based on the applicable contract language in effect at the time the services were rendered. Exclusions, limitations or exceptions may apply. Benefits may vary based on contract, and individual member benefits must be verified. Wellmark determines medical necessity only if the benefit exists and no contract exclusions are applicable. This medical policy may not apply to FEP. Benefits are determined by the Federal Employee Program.

 

This Medical Policy document describes the status of medical technology at the time the document was developed. Since that time, new technology may have emerged or new medical literature may have been published. This Medical Policy will be reviewed regularly and be updated as scientific and medical literature becomes available.

 

Description:

Stereotactic radiosurgery (SRS) , also referred to as stereotactic ablative surgery, is a method of delivering high doses of precisely targeted ionizing radiation to intracranial lesions. SRS, when used extra cranially, it is called stereotactic body radiation therapy (SBRT).

 

Delivery systems for SRS and SBRT include, but may not be limited to:

  • CyberKnife is a radiation delivery system that consists of a lightweight linear accelerator device (LINAC) that is mounted to a multi-jointed robotic arm. This device reportedly utilizes a proprietary real-time image-guidance system to deliver stereotactic radiosurgery or radiotherapy. It was designed to enable access hard to reach or complex shaped tumors that may not be accessible by surgery and other radiosurgical technologies.
  • Gamma Knife (eg, Perfexion SRS system, Target System) is s radiosurgery technology, which by design is restricted to treating brain tumors. The device utilizes ionizing radiation (gamma rays) produced by 201 radioactive colbalt-60 sources to ablate intracranial targets via a fixed stereotactic frame.
  • GammaPod is a stereotactic radiotherapy system that is designed to deliver SBRT by purportedly using thousands of individual focused beams from 36 rotating radioactive Cobalt-60 sources. It is intended for use in the noninvasive stereotactic delivery of radiation to a portion of the breast in conjunction with breast conserving treatment. The individual will lie prone on a table with the breast immobilized in a vacuum-assisted cup, which supposedly provides increased accuracy in the delivery of the radiation.

 

Key issues regarding the role for SRS in treating metastatic disease are the size and number of lesions that can be treated and whether or not SRS should be combined with whole brain irradiation to address lesions that are undetectable with imaging techniques. As part of the American Association of Neurological Surgeons, the Congress of Neurological Surgeons, and Joint Tumor Section Multidisciplinary Evidence Based Clinical Practice Parameter Guidelines on Metastatic Brain Tumors, a guideline was developed addressing this role, which offered the following recommendation:

 

  • The local control advantage of single-dose SRS for patients with greater than or equal to 4 metastatic brain tumors and a KPS [Karnofsky performance score] greater than or equal to 70% warrafnts further investigation in the form of an RCT.

 

National Guidelines and National Organizations Recommendations

National Comprehensive Cancer Network guidelines version 3.2018 for the treatment of prostate cancer notes: SBRT can be considered cautiously as an alternative to conventionally fractionated regimes at clinics with appropriate technology and clinical expertise. It is noted that during oligometastatic disease SBRT may be considered in clinical trials.

 

National Comprehensive Cancer Network guidelines version 2.2018 for the treatment of small cell lung cancer (SCLC) notes: A few reports have suggested that stereotactic ablative ratiotherapy (SBRT) might be useful for select patients with limited-stage SCLC; however, there are insufficient data to make a recommendation.

 

In May, 2013, ASTRO updated its Model Policy for SBRT and states "It is ASTRO's opinion that data supporting the use of SBRT for prostate cancer have matured to a point where SBRT could be considered an appropriate alternative for select patients with low to intermediate risk disease."

 

In 2013, the American Society for Radiation Oncology (ASTRO) published a Model Policy that addressed the role of SBRT in the treatment of spinal metastases, stating SBRT has been demonstrated to achieve durable tumor control when treating lesions in vertebral bodies or the paraspinous region, where extra care must be taken to avoid excess irradiation of the spinal cord when tumor-ablative doses are administered. However, the document also notes that when palliation is the primary treatment goal "it is generally appropriate to use a less technically complex form of palliative radiotherapy rather than SBRT."

 

The Agency for Healthcare Research and Quality (AHRQ)'s Effective Health Care Program released a new technical brief (2011) that provides a broad overview of the current state of evidence on the use of stereotactic body radiation therapy for targeting solid malignant tumors. The brief, Stereotactic Body Radiation Therapy, identifies gaps in the scientific data regarding the theoretical advantages of stereotactic body radiation therapy over other radiotherapies in actual clinical use. While stereotactic body radiation therapy appears to be widely used for treatment of a variety of cancer types, none of the currently available studies includes comparison groups. The researchers noted that in order to assess fully the benefits and risks of stereotactic body radiation therapy, comparative studies are needed. These studies should preferably be randomized trials but, at a minimum, there is a need for trials with concurrent controls. The technical brief also provides a review of key research questions that remain unanswered and may be helpful to radiology researchers in prioritizing future research.

 

The Expert Panel on Radiation Oncology-Gynecology/American College of Radiology‘s Appropriateness Criteria on “Definitive therapy for early stage cervical cancer” stated that “Stereotactic body RT (SBRT) has been shown to be a useful treatment option in other tumor sites, especially in early stage lung cancer. There are preliminary data on its use in treating cervical cancer, but, given target definition, tumor motion, and the proven track record of brachytherapy, SBRT should not be considered a substitute for brachytherapy”.

 

SRS has also been studied in a wide variety of other cranial applications including the treatment of epilepsy, chronic pain, Parkinson's disease and other movement disorders. For these applications, there is a lack of studies regarding the safety and effectiveness of radiosurgery in comparison with standard therapies.

 

Prior Approval:

Not applicable

 

Policy:

Stereotactic radiosurgery (SRS)

Stereotactic radiosurgery (SRS) using a gamma ray or linear accelerator may be considered medically necessary for the following indications:

  • arteriovenous malformations;
  • acoustic neuromas;
  • pituitary adenomas;
  • nonresectable, residual, or recurrent meningiomas;
  • craniopharyngiomas;
  • glomus jugulare tumors;
  • solitary or multiple brain metastases in patients having good performance status and no active systemic disease;
  • primary malignancies of the central nervous system (CNS), including, but not limited to, high-grade gliomas (initial treatment or treatment of recurrence);
  • trigeminal neuralgia refractory to medical management;
  • base of skull chordomas and chondrosarcomas;
  • oligometastases

 

Stereotactic radiosurgery is considered Investigational for the following including, but not limited to:

  • the treatment of seizures, including epilepsy
  • functional disorders (other than trigeminal neuralgia), including chronic pain, headaches, and tremor
  • uveal melanoma
  • Parkinson’s disease and other movement disorders
  • Mammographic microcalcification
  • Behavior Health Disorders

 

Stereotactic Body Radiotherapy (SBRT)

Stereotactic body radiotherapy (SBRT) may be considered medically necessary for the following indications:

  • Patients with stage T1 or T2a non-small-cell lung cancer (not >5 cm) showing no nodal or distant disease and who are not candidates for surgical resection;
  • Spinal or vertebral body tumors (metastatic or primary) in patients who have received prior radiotherapy.
  • spinal or vertebral metastases that are radioresistant (eg, renal cell carcinoma, melanoma, sarcoma).
  • Primary head and neck stage IV tumor (Any N1, M0, M1 and G) with limited tumor bulk amenable to local therapy
  • Hepatocellular carcinoma and secondary metastasis to the liver that is considered
  • Stereotactic body radiotherapy (SBRT) is considered medically necessary for prostate cancer when all of the following criteria (1-4) are all met:
    1. Low grade prostate cancer defined by a Gleason score less than or equal to 6 and prostate-specific antigen (PSA) less than 10 ng/mL; and
    2. Minimal disease defined as less than four cores positive; and
    3. No evidence of extra prostatic disease; and
    4. Life expectancy of greater than 10 years.

 

Stereotactic body radiotherapy is investigational for the following including, but are not limited to:

  • Cancer of the liver when tumor resection is an option
  • Pancreatic cancer
  • Kidney Cancer
  • Cancer of the adrenal glands
  • Breast Cancer
  • Cervical Cancer
  • Kidney/renal cancer
  • Thyroid Cancer
  • Cardiac Arrhythmia

 

Rationale

The evidence is insufficient to determine the effects of the technology effects on health outcomes in patients who have solid tumors, primary or metastatic, of the liver, pancreas, kidney, adrenal glands, and oligometastases, except with metastases to the spine. There is a lack of studies that show the use of SRS/SBRT has the expectation of a long-term benefit that could not have been attained with conventional therapy. Locally ablative therapies such as chemoembolization or radiofrequency ablation are established therapies for the treatment of inoperable primary liver cancer or metastatic disease.

 

Procedure Codes and Billing Guidelines:

To report provider services, use appropriate CPT* codes, Alpha Numeric (HCPCS level 2) codes, Revenue codes and / or diagnosis codes.

  • 61796 Stereotactic radiosurgery (particle beam, gamma ray or linear accelerator); 1 simple cranial lesion
  • 61797 Stereotactic radiosurgery (particle beam, gamma ray or linear accelerator) each additional cranial lesion, simple (List separately in addition to code for primary procedure)
  • 61798 Stereotactic radiosurgery (particle beam, gamma ray or linear accelerator); 1 complex cranial lesion
  • 61799 Stereotactic radiosurgery (particle beam, gamma ray or linear accelerator) each additional cranial lesion, complex (List separately in addition to code for primary procedure)
  • 61800 Application of stereotactic headframe for stereotactic radiosurgery (List separately in addition to code for primary procedure)
  • 63620 Stereotactic radiosurgery (particle beam, gamma ray, or linear accelerator); 1 spinal lesion
  • 63621 Stereotactic radiosurgery (particle beam, gamma ray, or linear accelerator); each additional spinal lesion (List separately in addition to code for primary procedure)
  • 77371 Radiation treatment delivery, stereotactic radiosurgery (SRS), complete course of treatment of cranial lesion(s) consisting of 1 session; multi-source Cobalt 60 based
  • 77372 Radiation treatment delivery, stereotactic radiosurgery (SRS), complete course of treatment of cranial lesion(s) consisting of 1 session; linear accelerator based
  • 77373 Stereotactic body radiation therapy, treatment delivery, per fraction to 1 or more lesions, including image guidance, entire course not to exceed 5 fractions
  • 77432 Stereotactic radiation treatment management of cranial lesion(s) (complete course of treatment consisting of 1 session)
  • 77435 Stereotactic body radiation therapy, treatment management, per treatment course, to 1 or more lesions, including image guidance, entire course not to exceed 5 fractions
  • G0339 Image guided robotic linear accelerator-based stereotactic radiosurgery, complete course of therapy in one session, or first session of fractionated treatment
  • G0340 Image guided robotic linear accelerator-based stereotactic radiosurgery, delivery including collimator changes and custom plugging, fractionated treatment, all lesions, per session, second through fifth sessions, maximum 5 sessions per course of treatment
  • 32701 Thoracic target(s) delineation for stereotactic body radiation therapy (SRS/SBRT), (photon or particle beam), entire course of treatment

 

Selected References:

  • Buyyounouski M, Miller R, Schefter T, et al. Stereotactic body radiotherapy (SBRT) for primary management of early-stage, low-intermediate risk prostate cancer. Report of the ASTRO Emerging Technology Committee (ETC). Fairfax, VA: American Society for Therapeutic Radiation Oncology (ASTRO); September 19, 2008.
  • Buyyounouski MK, Balter P, D'Ambrosio DJ, et al. Stereotactic body radiotherapy for early-stage non-small-cell lung cancer: Report of the ASTRO Emerging Technology Committee. Full Report. Fairfax, VA: American Society for Therapeutic Radiation Oncology (ASTRO); January 12, 2010.
  • Yamada Y, Laufer I, Cox BW, et al. Preliminary results of high-dose single-fraction radiotherapy for the management of chordomas of the spine and sacrum. Neurosurgery. 2013;73(4):673-680; discussion 680.
  • Shah A, Hahn SM, Stetson RL, et al. Cost-effectiveness of stereotactic body radiation therapy versus surgical resection for stage I non-small cell lung cancer. Cancer. 2013;119(17):3123-3132.
  • Small W Jr, Strauss JB, Jhingran A, et al, Expert Panel on Radiation Oncology-Gynecology. ACR Appropriateness Criteria® definitive therapy for early stage cervical cancer. [online publication]. Reston (VA): American College of Radiology (ACR); 2012.
  • Howington JA, Blum MG, Chang AC, et al. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e278S-e313S.
  • Zhang B, Zhu F, Ma X, et al. Matched-pair comparisons of stereotactic body radiotherapy (SBRT) versus surgery for the treatment of early stage non-small cell lung cancer: A systematic review and meta-analysis. Radiother Oncol. 2014;112(2):250-255.
  • Chang JY, Senan S, Paul MA, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: A pooled analysis of two randomised trials. Lancet Oncol. 2015;16(6):630-637.
  • Hernandez-Duran S, Hanft S, Komotar RJ, Manzano GR. The role of stereotactic radiosurgery in the treatment of intramedullary spinal cord neoplasms: A systematic literature review. Neurosurg Rev. 2015 Jul 30 [Epub ahead of print].
  • Tipton KN, Sullivan N, Bruening W, et al. Stereotactic body radiation therapy. Effective Healthcare Program Technical Brief.No. 6 Prepared by the ECRI Institute Evidence-Based Practice Center for the Agency for Healthcare Research and Quality (AHRQ) under Contract No. 290-02-0019. AHRQ Publication No. 10(11)-EHC058-EF. Rockville, MD: AHRQ; May 2, 2011.
  • National Comprehensive Cancer Network. Clinical practice guideline: Hepatobiliary Cancers. Version 2.2018 NCCN: Fort Washington, PA.
  • National Comprehensive Cancer Network. Clinical practice guideline: Pancreatic Adenocarcinoma. Version 2.2018 NCCN: Fort Washington, PA.
  • National Comprehensive Cancer Network. Clinical practice guideline: Kidney Cancer. Version 4.2018. NCCN: Fort
    Washington, PA.
  • National Comprehensive Cancer Network. Clinical practice guideline: Melanoma. Version 3.2018. NCCN: Fort
    Washington, PA.
  • National Comprehensive Cancer Network. Clinical practice guideline: Breast cancers. Version 1.2018. NCCN: Fort Washington, PA.
  • National Comprehensive Cancer Network. Clinical practice guideline: Cervical cancers. Version 2.2018. NCCN: Fort Washington, PA.
  • National Comprehensive Cancer Network. Clinical practice guideline: Soft Tissue Sarcoma. Version 2.2018. NCCN: Fort Washington, PA.
    National Comprehensive Cancer Network. Clinical practice guideline: Bone cancers. Version 2.2018. NCCN: Fort Washington, PA.
  • National Comprehensive Cancer Network. Clinical practice guideline: Small Cell Lung Cancer. Version 2.2018. NCCN: Fort Washington, PA.
  • National Comprehensive Cancer Network. Clinical practice guideline: Prostate Cancer. Version 3.2018. NCCN: Fort Washington, PA.
  • American College of Radiology (ACR). ACR Appropriateness Criteria. Management of recurrent endometrial cancer.
  • Régis, J., Tuleasca, C., Resseguier, N., Carron, R., Donnet, A., Gaudart, J., & Levivier, M. (2016). Long-term safety and efficacy of gamma knife surgery in classical trigeminal neuralgia: A 497-patient historical cohort study. Journal of Neurosurgery, 124(4), 1079–1087. doi:10.3171/2015.2.jns142144
  • Herman, J., Chang, D., Goodman, K., et. al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer 2015; 121(7):1128-1137. 
  • Wahl, D., Stenmark, M., Tao, Y., et. al. Outcomes after stereotactic body radiotherapy or radiofrequency ablation for hepoatocellular carcinoma. J Clin Oncology 2016; 34:452-9. 
  • ECRI Institute. Technology News. FDA approves GammaPod radiotherapy system for breast cancer. Published February 12, 2018.
  • Nguyen T, Chung LK, Sheppard JP, et al. Surgery versus stereotactic radiosurgery for the treatment of multiple meningiomas in neurofibromatosis type 2: Illustrative case and systematic review. Neurosurg Rev. 2017 Sep 13
  • Bui TT, Lagman C, Chung LK, et al. Systematic analysis of clinical outcomes following stereotactic radiosurgery for central neurocytoma. Brain Tumor Res Treat. 2017;5(1):10-15.
  • Zhong J, Patel K, Switchenko J, et al. Outcomes for patients with locally advanced pancreatic adenocarcinoma treated with stereotactic body radiation therapy versus conventionally fractionated radiation. Cancer. 2017;123(18):3486-3493

 

Policy History:

  • July 2018 - Annual Review, Policy Revised
  • July 2017 - Annual Review, Policy Revised
  • July 2016 - New policy

Wellmark medical policies address the complex issue of technology assessment of new and emerging treatments, devices, drugs, etc.   They are developed to assist in administering plan benefits and constitute neither offers of coverage nor medical advice. Wellmark medical policies contain only a partial, general description of plan or program benefits and do not constitute a contract. Wellmark does not provide health care services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Wellmark or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. Our medical policies may be updated and therefore are subject to change without notice.

 

*CPT® is a registered trademark of the American Medical Association.