Medical Policy: 02.01.08 

Original Effective Date: December 2000 

Reviewed: July 2021 

Revised: July 2021 



This policy contains information which is clinical in nature. The policy is not medical advice. The information in this policy is used by Wellmark to make determinations whether medical treatment is covered under the terms of a Wellmark member's health benefit plan. Physicians and other health care providers are responsible for medical advice and treatment. If you have specific health care needs, you should consult an appropriate health care professional. If you would like to request an accessible version of this document, please contact customer service at 800-524-9242.


Benefit Application:

Benefit determinations are based on the applicable contract language in effect at the time the services were rendered. Exclusions, limitations or exceptions may apply. Benefits may vary based on contract, and individual member benefits must be verified. Wellmark determines medical necessity only if the benefit exists and no contract exclusions are applicable. This medical policy may not apply to FEP. Benefits are determined by the Federal Employee Program.


This Medical Policy document describes the status of medical technology at the time the document was developed. Since that time, new technology may have emerged or new medical literature may have been published. This Medical Policy will be reviewed regularly and be updated as scientific and medical literature becomes available.



Complaints of imbalance are common in older adults and contribute to the risk of falling in this population and are a cause of death and disability in this population in the United States. Maintenance of balance is a complex physiologic process, requiring interaction of the vestibular, visual and proprioceptive/somatosensory system, and central reflex mechanisms. Balance is also influenced by the general health of the patient (i.e., muscle tone, strength, range of motion). Therefore, identifying and treating the underlying balance disorder can be difficult. Commonly used balance function tests (e.g., electronystagmography, rotational chair tests) attempt to measure the extent and site of a vestibular lesion but do not assess the functional ability to maintain balance.


Dynamic posturography, also known as computerized dynamic posturography (CDP) tests a patient’s balance control in situations intended to isolate factors that affect balance in everyday experiences. 


Computerized dynamic posturography (CDP) aims to provide quantitative information on a patient’s functional ability to maintain balance. The patient, wearing a harness to prevent falls, stands on an enclosed platform surrounded by a visual field. By altering the angle of the platform or shifting the visual field, the test assesses movement coordination and the sensory organization of visual, somatosensory, and vestibular information relevant to postural control. The patient undergoes six different testing situations designed to evaluate the vestibular, visual, and proprioceptive/somatosensory components of balance. Sway-referencing involves making instantaneous computer-aided alterations to the platform or visual surround to coincide with changes in body position produced by sway. The purpose of sway-referencing is to cancel out accurate feedback from somatosensory or visual systems that are normally involved in maintaining balance. In the first 3 components of the test, the support surface is stable, and visual cues are either present, absent, or sway-referenced. In tests 4 to 6, the support surface is sway-referenced to the individual, and visual cues are either present, absent or sway-referenced. In tests 5 and 6, the only accurate sensory cues available for balance are vestibular cues. Results of computerized dynamic posturography (CDP) have been used to determine what type of information (i.e., visual, vestibular, proprioceptive) can and cannot be used to maintain balance. Computerized dynamic posturography (CDP) cannot diagnose pathology or be used to localize the site of a lesion.


Static posturography is the ability to maintain balance on a fixed platform, with eyes open and/or closed and can show three main patterns:

  • Weight-bearing asymmetries
  • An increase in sway path reflecting unsteadiness
  • A small limit of stability beyond which the measure center of pressure (CoP) cannot move further without causing a loss of balance, i.e., impaired coordination between posture and movement


In general terms, the tests measure an individual’s balance (as measured by a force platform to calculate the movement of the patient’s center of mass) while visual and somatosensory cues are altered. These tests vary by whether eyes are open or closed, the platform is fixed or sway-referenced, and whether the visual surround is fixed or sway-referenced. Posturography provides quantitative information on the degree of imbalance present but is not intended to diagnosis specific types of balance disorders.


Dynamic/Static Posturography for Balance Dysfunction

Clinical Context and Test Purpose

The purpose of computerized dynamic/static posturography in patients who have balance dysfunction is to inform a decision whether to pursue additional diagnostic workup (e.g., imaging studies that would not have been indicated based on clinical presentation alone) or immediate treatment.



The relevant population(s) of interest are patients presenting with balance dysfunction or dizziness. It would be expected that these patients will have had an initial basic evaluation directed by symptoms that will have included a clinical examination and history, with appropriate vital signs and orthostatic blood pressure measurements, and may have had basic evaluations as directed by their symptoms (e.g., electrocardiogram).



The intervention includes a class of dynamic posturography tests. A number of tests have clearance from the FDA. Patients with balance dysfunction being evaluated with dynamic posturography are generally seen in the outpatient setting. Testing may be conducted by audiologists, physical therapists, or technologies under the supervision of physicians.



Depending on the clinical presentation, patients with balance dysfunction may be managed with clinical evaluation alone or with more intensive evaluations including vestibular functioning testing, which can be used to localize the cause of the dysfunction.



The outcomes of intersest are to diagnose and treat the underlying condition correctly.


Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).


No studies were identified that evaluated the sensitivity and specificity of dynamic posturography for diagnosing any specific balance disorder compared with commonly accepted balance tests. There is no criterion standard test for measuring balance, which is a physiologic parameter. Absent a criterion standard comparison, the literature search sought to identify studies that systematically compared results of dynamic posturography and other balance tests in an appropriate patient population (i.e., individuals at increased risk of falling due to balance issues).


Several studies have used both dynamic posturography and another test to assess balance. For example, Fritz et. al. (2015) assessed the correlation between dynamic and static posturography and other measures of gait and balance dysfunction in 57 ambulatory patients with multiple sclerosis. Two dynamic posturography parameters and 4 static posturography parameters were measured. Walking velocity (the alternative test) was measured in 2 ways: (1) in a laboratory using the Optotrak Motion Capture System and (2) using the timed 25-foot walk test. In regression analysis, demographics, one of the dynamic posturography parameters (anteroposterior sway), and one of the static posturography parameters (eyes open, feet apart) explained 95.3% of the variance in walking velocity. A higher degree of anteroposterior sway, assessed using dynamic posturography, was significantly associated with higher walking velocity. Although the study found that dynamic posturography was associated with measures of walking velocity, the utility of this information regarding impact on patient management is uncertain.


A study by Ferrazzoli et. al. (2015) compared dynamic posturography with the Berg Balance Scale score. The Berg Balance Scale is a 14-item tool that assesses performance on a variety of functional tasks, each rated 0-to-4 (maximal score, 56 points). Lower scores indicate higher fall risk. The study included 29 patients with Parkinson disease (PD) not complaining of balance problems and 12 healthy controls matched for age and sex. Scores on the Berg Balance Scale were significantly lower in PD patients than in controls (p=0.002). Similarly, results of body sway analysis assessed by posturography differed significantly between PD patients and controls. Specifically, compared with controls, PD patients had a higher standard deviation of body sway measurements in the eyes open (p=0.005) and in the eyes open counting (p=0.020) conditions. The standard deviation of PD patients was also higher than controls in posturography along the mediolateral axis in the eyes open condition (p=0.019), but results were similar in the eyes open counting condition. The authors suggested that posturography could be used to identify early balance disorders in PD patients before they develop clinical symptoms, and that rehabilitation programs could be developed to address specific balance issues. As discussed in the next section, there is a lack of prospective studies comparing health outcomes in patients managed with and without dynamic posturography.


Other published literature on dynamic posturography has assessed fall risk in older individuals and other populations. For example, Whitney et al (2006) retrospectively reviewed 100 charts of individuals referred to a balance and falls clinic with a vestibular diagnosis using dynamic posturography. Patients who reported multiple falls over 6 months had lower initial scores on the Sensory Organization Test than those who reported one or no falls.


Additional studies have used dynamic posturography as a research tool to study balance (e.g., in older adults, PD patients, knee osteoarthritis patients); these studies were not designed to evaluate the clinical validity of dynamic posturography. Dynamic posturography has also been considered a control technique in studies evaluating other novel methods of assessing balance. For example, Alahmari et. al. (2014) assessed the reliability and validity of a balance rehabilitation device and compared findings with dynamic posturography using the EquiTest.



Describing the diagnostic performance of dynamic/static posturography in terms of sensitivity and specificity is difficult given the lack of a true criterion standard for measuring balance. The available studies comparing dynamic/static posturography with other types of clinical measures of balance have suggested the posturography results correlate with those measures; however, whether dynamic/static posturography can be used as a diagnostic test is unknown.


Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.


Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.


Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.


No randomized or nonrandomized controlled studies were identified that compared health outcomes in patients when treatment decisions were made with and without the results of dynamic posturography.


Several retrospective studies have described a customized exercise program based on results of a complete medical and neuro-otologic history and physical examination that included platform posturography. However, the contribution of dynamic posturography to the overall assessment and customization of the exercise program is unclear. In particular, the reports did not describe how (or whether) the exercise programs were modified based on specific deficits identified by platform posturography. Customized vestibular rehabilitation programs can be devised with a standard battery of tests. These retrospective reports were also limited by selection bias and lack of follow-up. Moreover, while these studies showed that individualized therapy could improve patient outcomes, no controlled trials have assessed whether individually customized therapy programs are more effective than generic vestibular exercises.


Also, other related studies have included the use of posturography in the assessment of patients after clinical intervention. Examples included studies conducted with Parkinson disease (PD) patients.



Direct evidence of how dynamic/static posturography can be used to improve outcomes is lacking. Absent direct evidence for a diagnostic test, a chain of evidence can sometimes be identified to demonstrate improvement in health outcomes. However, in the case of dynamic/static posturography, the chain of evidence about clinical validity and how the test would be used in practice is uncertain; therefore, no inferences can be made about clinical utility.


Summary of Evidence

For individuals with suspected balance disorders who receive dynamic/static posturography, the evidence includes cross-sectional comparisons of results in patients with balance disorders and healthy controls, and retrospective case series reporting outcomes for patients assessed with dynamic/static posturography as part of clinical care. There are no generally accepted reference standards for dynamic/static posturography, which makes it difficult to determine how the results can be applied in clinical care. There are no studies demonstrating the clinical utility of dynamic/static posturography that would lead to change in management that improve outcomes (e.g., symptoms and function). The evidence is insufficient to determine the effects of this technology on net health outcomes.


Practice Guideline and Position Statements

American Academy of Otolaryngology – Head and Neck Surgery

The American Academy of Otolaryngology – Head and Neck Surgery have issued a position statement and a guideline that mentions dynamic posturography:

  • In 2017, a 2008 clinical practice guideline for benign paroxysmal positional vertigo was updated. In this guideline on the management of benign paroxysmal positional vertigo, computerized posturography was listed as 1 of 19 interventions considered for diagnosing this condition.
  • September 2014 - A position statement on the evaluation or therapy of individuals with suspected balance or dizziness disorders listed dynamic posturography as 1 of 4 medically indicated tests or evaluation tools.


Regulatory Status

The NeuroCom EquiTest® is a dynamic posturography device that received 510(k) marketing clearance from the U.S. Food and Drug Administration (FDA). Other dynamic posturography device makers include Micromedical Technology, Metitur, and Vestibular Technologies.


Prior Approval:

Not applicable



Posturography is considered investigational for all indications including, but not limited to all of the following:

  • Dynamic Posturography
  • Static Posturography


Overall, there is weak evidence in the peer-reviewed literature regarding the efficacy of dynamic/static posturography for individuals with suspected balance disorders. There are no generally accepted reference standards for dynamic/static posturography, which makes it difficult to determine how the results can be applied in clinical care. There are no studies demonstrating the clinical utility of dynamic/static posturography that would lead to change in management that improve outcomes (e.g., symptoms and function). The evidence is insufficient to determine the effects of this technology on net health outcomes.


Procedure Codes and Billing Guidelines:

To report provider services, use appropriate CPT* codes, Modifiers, Alpha Numeric (HCPCS level 2) codes, Revenue codes, and/or diagnosis codes.

  • 92548 Computerized dynamic posturography sensory organization test (CDP-SOT), 6 conditions (i.e., eyes open, eyes closed, visual sway, platform sway, eyes closed platform sway, platform, and visual sway), including interpretation and report;
  • 92549 Computerized dynamic posturography sensory organization test (CDP-SOT), 6 conditions (i.e., eyes open, eyes closed, visual sway, platform sway, eyes closed platform sway, platform, and visual sway), including interpretation and report; with motor control test (MCT) and adaptation test (ADT)


Selected References:

  • Furman JM. Role of posturography in the management of vestibular patients. 1995;112:8-15.
  • Allum JHJ, Shepard NT. An overview of the clinical use of dynamic posturography in the differential diagnosis of balance disorders. Journal of Vestibular Research 1999;9:223-252.
  • Evans, MK Krebs DE. Posturography does not test vestibulospinal function. Otolaryngol Head Neck Surg. 1999 Feb; 120(2):164-73. 
  • Ruckenstein MJ, Shepard NT. Balance Function Testing; A rational approach. Otolaryngologic Clinics of North America; Vol.33;No3;Jun 2000.
  • Amin M, Girardi M, Konrad HR, Hughes L. A comparison of electronystagmography results with posturography findings from the Balance trak 500. Otol Neurol. 2002 Jul;23(4);488-93.
  • Morgan SS, Beck WG, Dobie RA. Can posturography identify malingerers? Otol Neurol 2002 Mar;23(2):214-7.
  • ECRI Institute. Dynamic Posturography for Balance Disorders. Plymouth Meeting (PA): ECRI Institute 2007 March 20. 9p. [ECRI custom hotline response].
  • Ebersbach, G & Gunkel, M. Posturography reflects clinical imbalance in Parkinson's disease. Mov Disord. 2010 Dec 13. [Epub ahead of print]
  • Pang MY, Lam FM, Wong GH, et al. Balance performance in head-shake computerized dynamic posturography: aging effects and test-retest reliability. Phys Ther. 2011 Apr;91(4):598.
  • Balaguer Garcia R, Pitarch Corresa S, Baydal Bertomeu JM, Morales Suarez-Varela MM. Static posturography with dynamic tests. Usefulness of biomechanical parameters in assessing vestibular patients. Acta Otorrinolaringol Esp. 2012 Sep-Oct;63(5):332-8. 
  • Ganesan M, Pasha SA, Pal PK, Yadav R, Gupta A. Direction specific preserved limits of stability in early progressive supranuclear palsy: a dynamic posturographic study. Gait Posture. 2012 Apr;35(4):625-9.
  • NeuroCom. Computerized Dynamic Posturography (CDP). Balance and Mobility
  • American Academy of Otolaryngology-Head and Neck Surgery Foundation. Position Statement: Posturography. Entnet
  • Bhattacharyya N, Baugh RF, Orvidas L, et al. American Academy of Otolaryngology-Head Neck, Surgery Foundation Clinical practice guideline: benign paroxysmal positional vertigo. Otolaryngol Head Neck Surg. 2008;139(5 Suppl 4):S47-81.
  • Pang MY, Lam FM, Wong GH, et al. Balance performance in head-shake computerized dynamic posturography: aging effects and test-retest reliability. Phys Ther. Feb 2011;91(2):246-253. PMID 21148260
  • Whitney SL, Roche JL, Marchetti GF, et al. A comparison of accelerometry and center of pressure measures during computerized dynamic posturography: a measure of balance. Gait Posture. Apr 2011;33(4):594-599. PMID 21333541
  • Fritz NE, Newsome SD, Eloyan A, et al. Longitudinal relationships among posturography and gait measures in multiple sclerosis. Neurology. May 19 2015;84(20):2048-2056. PMID 25878185
  • Ganesan M, Pasha SA, Pal PK, et al. Direction specific preserved limits of stability in early progressive supranuclear palsy: a dynamic posturographic study. Gait Posture. Apr 2012;35(4):625-629. PMID 22225854
  • Lee JM, Koh SB, Chae SW, et al. Postural instability and cognitive dysfunction in early Parkinson's disease. Can J Neurol Sci. Jul 2012;39(4):473-482. PMID 22728854
  • Pierchala K, Lachowska M, Morawski K, et al. Sensory Organization Test outcomes in young, older and elderly healthy individuals - preliminary results. Otolaryngol Pol. Jul 2012;66(4):274-279. PMID 22890532
  • Biggan JR, Melton F, Horvat MA, et al. Increased load computerized dynamic posturography in prefrail and nonfrail community-dwelling older adults. J Aging Phys Act. Jan 2014;22(1):96-102. PMID 23416307
  • Ferrazzoli D, Fasano A, Maestri R, et al. Balance dysfunction in Parkinson's disease: the role of posturography in developing a rehabilitation program. Parkinsons Dis. 2015;2015:520128. PMID 26504611
  • Alahmari KA, Marchetti GF, Sparto PJ, et al. Estimating postural control with the balance rehabilitation unit: measurement consistency, accuracy, validity, and comparison with dynamic posturography. Arch Phys Med Rehabil. Jan 2014;95(1):65-73. PMID 24076084
  • Izquierdo-Renau M, Perez-Soriano P, Ribas-Garcia V, et. al. Intra and intersession repeatability and reliability of the S-Plate(R) pressure platform. Gait Posture. Dec 02 2016;52:224-226. PMID 27936441
  • UpToDate. Evaluation and Dizziness in Children and Adolescents. Theresa Walls M.D., MPH, Stephen J. Teach M.D., MPH. Topic last updated May 26, 2015.
  • UpToDate. Meniere Disease. Howard S. Moskowitz M.D, PhD, Elizabeth A. Dinces M.D., Topic last updated May 22, 2017.
  • UpToDate. Evaluation of the Patient with Vertigo. Joseph M. Furman M.D., PhD, Jason JS Barton M.D, PhD, FRCPC. Topic last updated June 10, 2015.     
  • American Academy of Otolaryngology-Head and Neck Surgery. Position Statement: Posturography.
  • Bhattacharyya N, Baugh RF, Orvidas L, et. al. Clinical Practice Guideline: Benign Paroxysmal Positional Vertigo (Update). Otolaryngology – Head and Neck Surgery 2017, Vol. 156(3S) S1-S47.
  • Buatois S, Gueguen R, Gauchard GC, et al. Posturography and risk of recurrent falls in healthy non-institutionalized persons aged over 65. Gerontology. Aug 2006;52(6):345-352. PMID 16905886 
  • Girardi M, Konrad HR, Amin M, et al. Predicting fall risks in an elderly population: computer dynamic posturography versus electronystagmography test results. Laryngoscope. Sep 2001;111(9):1528-1532. PMID 11568601 
  • Sinaki M, Lynn SG. Reducing the risk of falls through proprioceptive dynamic posture training in osteoporotic women with kyphotic posturing: a randomized pilot study. Am J Phys Med Rehabil. Apr 2002;81(4):241-246. PMID 11953540
  • Whitney SL, Marchetti GF, Schade AI. The relationship between falls history and computerized dynamic posturography in persons with balance and vestibular disorders. Arch Phys Med Rehabil. Mar 2006;87(3):402-407. PMID 16500176
  • Lim KB, Lee HJ. Computerized posturographic measurement in elderly women with unilateral knee osteoarthritis. Ann Rehabil Med. Oct 2012;36(5):618-626. PMID 23185725
  • Lundin F, Ledin T, Wikkelso C, et al. Postural function in idiopathic normal pressure hydrocephalus before and after shunt surgery: A controlled study using computerized dynamic posturography (EquiTest). Clin Neurol Neurosurg. Sep 2013;115(9):1626-1631. PMID 23489444
  • Samy HM. Dizziness, Vertigo and Imbalance. Medscape Updated March 13, 2017
  • Neurocom’s SMART EquiTest Computerized Dynamic Posturography.
  • Bronstein AM. Pavlou M. Neurological Rehabilitation. Handbook of Clinical Neurology. 2013. Science Direct


Policy History:

  • July 2021 - Annual Review, Policy Revised
  • July 2020 - Annual Review, Policy Revised
  • July 2019 - Annual Review, Policy Renewed
  • July 2018 - Annual Review, Policy Revised
  • July 2017 - Annual Review, Policy Renewed
  • July 2016 - Annual Review, Policy Renewed
  • August 2015 - Annual Review, Policy Revised
  • September 2014 - Annual Review, Policy Renewed
  • October 2013 - Annual Review, Policy Renewed
  • December 2012 - Annual Review, Policy Renewed
  • December 2011 - Annual Review, Policy Renewed
  • December 2010 - Annual Review, Policy Renewed

Wellmark medical policies address the complex issue of technology assessment of new and emerging treatments, devices, drugs, etc.   They are developed to assist in administering plan benefits and constitute neither offers of coverage nor medical advice. Wellmark medical policies contain only a partial, general description of plan or program benefits and do not constitute a contract. Wellmark does not provide health care services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Wellmark or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. Our medical policies may be updated and therefore are subject to change without notice.


*CPT® is a registered trademark of the American Medical Association.